
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2008

IseHarvest: TCP packet data re-assembler
framework for network traffic content
Stephen Michael Eilers
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Eilers, Stephen Michael, "IseHarvest: TCP packet data re-assembler framework for network traffic content" (2008). Retrospective
Theses and Dissertations. 14940.
https://lib.dr.iastate.edu/rtd/14940

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F14940&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F14940&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F14940&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F14940&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F14940&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F14940&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Frtd%2F14940&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/14940?utm_source=lib.dr.iastate.edu%2Frtd%2F14940&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

IseHarvest: TCP packet data re-assembler framework for network traffic content

by

Stephen Michael Eilers

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Co-majors: Information Assurance; Computer Engineering

Program of Study Committee:

Doug Jacobson, Major Professor

Thomas E. Daniels

Barbara Licklider

Iowa State University

Ames, Iowa

2008

Copyright © Stephen Michael Eilers, 2008. All rights reserved.

www.manaraa.com

UMI Number: 1453074

1453074
2008

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

www.manaraa.com

ii

TABLE OF CONTENTS

LIST OF FIGURES iii

ABSTRACT iv

CHAPTER 1. INTRODUCTION 1

1.1 IseHarvest Overview 2

CHAPTER 2. RELATED TECHNOLOGY 4

2.1 Tcpdump 4

2.2 Wireshark 6

2.3 Iris
®
 10

2.4 Tcpflow 12

2.5 Result 14

CHAPTER 3. IMPLEMENTATION 15

3.1 Tcpflow 15

3.2 IseHarvest Extension 18
3.2.1 Packet Filtering 18

3.2.2 Data Extraction and Reconstruction 22

3.2.3 Re-linking 25

3.2.4 Framework 29

3.2.5 Compiling 31

3.2.6 Operating 31

CHAPTER 4. TESTING 33

CHAPTER 5. CONCLUSION 38

5.1 Limitations 38

5.2 Future Work 40

REFERENCES 42

ACKNOWLEDGEMENTS 43

www.manaraa.com

iii

LIST OF FIGURES

Figure 1: IseHarvest Flow... 3

Figure 2: Tcpdump Output at Iowa State Homepage [4] .. 5

Figure 3: Wireshark Capture of ISU Homepage ... 7

Figure 4: Wireshark TCP Stream of ISU Homepage .. 9

Figure 5: Iris
®
 Capture & Visual of ISU Homepage... 11

Figure 6: Tcpflow Output of ISU Homepage.. 13

Figure 7: GET Request and Document [12].. 20

Figure 8: ISU Homepage with web browser... 26

Figure 9: ISU Homepage with IseHarvest without re-linking .. 27

Figure 10: ISU Homepage with IseHarvest with re-linking ... 29

Figure 11: Wireshark Capturing ISU Homepage for testing... 35

Figure 12: ISU Homepage Example Directory Output with IseHarvest........................... 35

Figure 13: Slashdot with IseHarvest [14].. 36

www.manaraa.com

iv

ABSTRACT

 IseHarvest is a network analysis tool designed as a framework for extracting data

from TCP streams. Once extracted, it reconstructs the data into individual files and

documents from captured network traffic, and saving the data locally. Besides being a

framework, IseHarvest passively extracts HTTP data from captured traffic and

reconstructs files and web directory layouts in such a way to enable web content

monitoring of network resources. By re-linking HTML and CSS files, it provides an after

the fact visual of how web sites were viewed over a network and a look at how

corresponding web servers are laid out by looking at only captured files.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

In today’s Internet-driven world, there are large quantities of data being sent over

computer networks, both on the large scale (Internet or World Wide Web) and smaller

scale (business, school or intranets). Network analysis is becoming a larger part of daily

life for these networks and network administration. A common method of analyzing a

network is to capture all traffic passing through the network over a period of time, usually

performed with an application similar to Wireshark, described in Section 2.2. That

captured traffic is then analyzed, using applications such as Wireshark, to retrieve

information that varies from what computers were involved in a connection, what type of

protocol was used in the traffic, and even to determine whether the information was

encrypted or not. This information is very useful in helping us prove that a specified

computer accessed a web site, when it accessed a site, what protocols were used, and

even what programs were used to access that web site. However, it can be difficult for

the common computer user and ad hoc administrator to make sense of this information,

due to the technical format, and determine what content was actually viewed. There may

be times where it can be desirable to determine what content was viewed by a specific

computer to ensure proper use of a business network. Therefore, it is necessary to create

an application which will allow an administrator to visually see the websites and images

which were viewed over the monitored network.

IseHarvest is intended to improve network analysis to determine what content was

passed over the internet connection. It attempts to reconstruct the content in such a

manner that it can be easily viewed, whether a user is technically trained or not. A

www.manaraa.com

2

specific example would be when a business is paying for its employees to attend a

seminar or conference. The business is spending money on this opportunity for

employees, and if employees are surfing the Internet for unrelated material, they might

not be gaining any benefits from this event. If a business were able to find out if

employees were wasting time using business resources, that could change how future

events are planned and what resources are available.

1.1 IseHarvest Overview

 IseHarvest was thought of and created from the need to make network analysis

easier by passively reconstructing standard web traffic into corresponding data files.

IseHarvest is also intended to provide a framework for implementation and extension of

additional network protocols. Its goals include: 1) read captured Transmission Control

Protocol (TCP) traffic, 2) extract the HyperText Transfer Protocol (HTTP) data, 3)

reconstruct that data into viable documents, videos and web pages, 4) re-link HTML and

CSS pages to allow local viewing without directly contacting a website, and 5) provide a

framework for future modifications and extensions to be added to IseHarvest. It reads

captured network traffic data and reconstructs it directly into the images, documents and

graphical web pages that were viewed over the network and stores them in a

reconstruction of server directories. This enables users of IseHarvest to easily understand

and comprehend what network users viewed over the Internet, what documents were sent

or received, and be able to see graphically what web pages have been viewed.

 In order to provide a visual aid in understanding IseHarvest’s flow, the following

diagram represents the process that data follows when run through IseHarvest. Upon

www.manaraa.com

3

receiving packets from Tcpflow implementation, if identified as HTTP, they are

processed and the data is extracted. When completed files are received, if determined to

be HTML or CSS files then the data is re-linked to allow easy viewing locally. Finally,

all files assembled, are written to the hard drive to be viewed later.

Figure 1: IseHarvest Flow

IseHarvest concurrently has other uses that it may prove to be beneficial for, such

as research environments similar to the Internet-Scale Event and Attack Generation

Environment (ISEAGE) project at Iowa State University. The ISEAGE simulation

environment creates large amounts of web traffic captured during events that could be

potentially extracted using IseHarvest. When used in conjunction with tools such as

Wireshark, useful information could be deduced from what type of attacks were being

performed and how websites were changed or modified as a result. Officials at

businesses, schools or universities could potentially use this software, depending on the

www.manaraa.com

4

situation, to verify whether employees or students are using company computers to view

class related material or unrelated material on school or business-controlled network

resources. There are numerous possibilities for IseHarvest to be used in web traffic

reconstruction. In the following section, the technologies examined when researching

IseHarvest will be mentioned.

CHAPTER 2. RELATED TECHNOLOGY

 This chapter presents a few technologies that provide functionalities along similar

lines to IseHarvest. Concurrently discussed are some of the limitations and reasons why

these applications are inadequate for the purpose of providing a more visual-oriented

network analysis option.

2.1 Tcpdump

 Tcpdump is an open source Unix/Linux compatible, command line application

designed to provide a dump or capture of traffic going over the network. Simply put,

Tcpdump prints out a description of the contents of data packets captured on a network

interface [1]. This dump can be supplemented with specific options to look for certain

types of traffic or can be used to dump all traffic that is on the network at the time of its

operation. In addition to capturing and filtering received packets, Tcpdump provides a

number of functionalities: 1) read and write captured traffic to data files in Packet

Capture (PCAP) [2] format, 2) filter packets based on specified parameters, and 3) print

limited or full data from each packet based on provided parameters. Tcpdump provides

basic options for network analysis while outputting its data to the screen or to data files.

www.manaraa.com

5

This can limit the ability of Tcpdump to provide detailed analysis of network traffic alone

and suggests that Tcpdump is most commonly used in conjunction with other traffic

analysis tools, such as Wireshark discussed in the next section, in order to provide

effective analysis.

 As mentioned, Tcpdump provides a very basic view of the network traffic. It

prints a summary of the packets that were captured on the wire, without necessarily

storing the data that those packets contained, by default [3]. There are options to provide

more detailed information, but the following is of the default screen output:

Figure 2: Tcpdump Output at Iowa State Homepage [4]

The above data includes information such as IP addresses, Domain Name System (DNS)

addresses, port numbers, etc... This information was captured while a web browser

viewed the Iowa State University homepage [4] and is used in reference to most images

unless noted otherwise. The information is useful because it can help potentially

determine what computers were involved in connections, general protocols (IP) and the

time of packet capture. However, it does not provide much useful information about

what a user is specifically looking at and what that information looks like. If this was

www.manaraa.com

6

from a past traffic capture, the listed host names or IPs could have changed their viewable

data, making it extremely difficult, if not impossible, to actually determine the content of

those sites. When Tcpdump is used to directly output packets to the hard drive, there is

much more detailed information provided in the file due to following the PCAP format;

otherwise Tcpdump returns the packet headers and data.

 As it can be seen from the above image, Tcpdump provides information that is

more directed toward the technically trained user. It does not provide any method for a

user to see a complete data file, whether text based or visually, in order to determine what

the data content is. This can limit the usefulness when the intent of network analysis is to

determine what the actual content of packets included.

 Additionally, Tcpdump was looked at to potentially be used as a base application

for building IseHarvest upon. It was chosen against because unlike Tcpflow discussed in

section 2.3, Tcpdump did not perform much in the way of TCP stream assembly.

2.2 Wireshark

 On Windows or UNIX related systems, Wireshark (or Ethereal if referring to

older versions) is an open source software package designed to provide network protocol

analyzing utilities to its users. Wireshark is a graphical user interface (GUI) network

protocol analyzer that provides a method to interactively browse packet data from a live

network or from a previously saved capture file. To reach this goal Wireshark provides a

number of functionalities: 1) filter captured data based on specified input, 2) organize

packets together into complete TCP streams to allow easier analysis of specific

connections, 3) read and write captured packets into a variety of formats for compatibility

www.manaraa.com

7

with other applications and 4) provide statistics to allow correlation between packets and

provide results from analyzing network protocols. These functionalities are extremely

useful, but can still potentially create difficulties in identifying the actual content being

viewed.

 Wireshark allows a user to interactively browse through captured packet data

from a live network or from previously captured traffic data for the functionalities

described above [5]. An example of this is as follows:

Figure 3: Wireshark Capture of ISU Homepage

Shown above is a capture from viewing Iowa State University’s home page. As shown,

Wireshark is broken into three major abilities: 1) browse through individual packets

www.manaraa.com

8

(green and blue colored), 2) break apart and list header information specifically (grey)

and 3) show the direct data content of each packet.

 Wireshark is extremely useful in technically analyzing data packets. It displays

the data effectively and uniformly in byte format, displaying and identifying different

byte fields in the data packets. However if a user is not used to examining how packet

headers worked, formats of packets, or even the hexadecimal numbering systems used

here, then this data may appear as hard to understand gibberish.

 Wireshark does begin to approach the purpose and functionality intended for this

thesis project. It allows a user to assemble all data into continuous TCP connections or

streams. A TCP stream in the context of this paper is a connection between two

computers where multiple transmissions take place. These streams may send one file or

many files between two computers maintaining the TCP stream. To construct the TCP

stream, the user picks a packet and enables the “Follow TCP Stream” function. By

following the IP addresses and ports used for each connection, Wireshark identifies all

packets that match the parameters of the selected packet to assemble related data packets

together and assembles them into the following format of figure 4. The format of the

TCP stream can be difficult to follow for new users. It includes the initial HTTP packets

that identify each file and follows that with a textual representation of assembled data

packets in the TCP stream. For a technically oriented person it provides a lot of useful

information, for example: operating systems, web browser, content (HTML or JPEG),

language and others. Unless the user possesses a rudimentary understanding of HTTP

packet headers, HTML language, CSS language and can understand what an image looks

like in byte format, however, it provides little information about what the web page

www.manaraa.com

9

Figure 4: Wireshark TCP Stream of ISU Homepage

viewed actually looks like. There are many other tools that also perform this same

functionality, including Capsa [6] and Javvin [7] products, but do not continue on to the

next step of extracting the data into separate files. To understand the formats of these

data segments, a user must perform a lot of copying and pasting of data to get it into

formats that can be understood. This is obviously not an easy or efficient method to view

images and other files.

 Wireshark provides a variety of benefits, but still leaves much to be desired

towards the goal of being able to see what another person saw over the network and being

able to read documents that are “right clicked” and “saved as” from online. It did

www.manaraa.com

10

however provide a useful tool in testing and implementing IseHarvest.

 Wireshark was not chosen as a base to implement IseHarvest in for two reasons.

The first reason is that IseHarvest is intended to reassemble data packets into full data

files. While this could be done with Wireshark, the graphical interface did not bring any

real advantage to IseHarvest since the majority of viewing would be operated through a

files system explorer or web browser. The second reason is that simplifying the

application would allow IseHarvest to run more quickly on stored capture files.

Wireshark is a fairly large and complicated application to have running in the background

of a computer. Therefore Wireshark was not chosen to be used as a base for IseHarvest.

2.3 Iris
®

 Iris
®
 Network Traffic Analyzer is commercial network traffic monitor that

provides limited visual web monitoring in addition to a number of functionalities similar

to Wireshark. Like Wireshark, Iris
®
 provides the ability to interactively browse through

individual packets captured from a network and allows a user to search for specific

packets, generate statistics, and identify usage of a targeted internet. In addition to these

abilities Iris
®
 also provides a limited ability for packet decoding. This means Iris

®
 can

organize captured packets and categorizes them by protocols such as HTTP, PPoE, and

SNMP [8]. Once packets are categorized, Iris
®
 provides a limited ability to visually see

what the stream contained as seen in figure 5. As seen above, Iris
®
 does provide limited

visualization capabilities for web traffic. When a stream is selected and decoded, Iris
®

reads the TCP streams into the respective files similarly to Wireshark. Once files are

reconstructed, Iris
®
 then takes the next step and allows physical viewing and visualization

www.manaraa.com

11

Figure 5: Iris
®
 Capture & Visual of ISU Homepage

of the data. When Iris
®
 visually shows an HTML page, it does not reference other

captured files but references back to the hosting web server to re-download the web page.

If Iris
®
 has no internet connection, it does not show you the web site as it actually

appears, but a text based representation from straight HTML. Additionally, in the above

example you can see some out of place text highlighted in red circles. Those pieces of

text are values that HTTP uses to segment data and are not handled by this application.

In addition to this, from closer look at the web page shows that it is not formatted as the

original Iowa State homepage is. IseHarvest attempts to handle many of these issues in

implementation.

www.manaraa.com

12

 While Iris
®
 allows a rudimentary visualization of HTTP and some other protocols;

it does have disadvantages of not extracting the data and storing them locally on the

computer for easy, separate analysis. Additionally, Iris
®
 requires an internet connection

to allow a user to visually see what other people saw over the network. Finally, Iris
®
 is a

commercial based application with a hefty price tag and therefore not easily expanded or

modified similar to open source applications, such as Wireshark or IseHarvest. Therefore

Iris
®
 does not meet the goals of IseHarvest, and leaves an opening for IseHarvest to

fulfill.

2.4 Tcpflow

 Tcpflow is an open source application designed to provide a capture of traffic

going over the viewable network. It differs from Tcpdump in that it reconstructs the

actual data streams and stores each flow in a separate file for later analysis [3]. Tcpflow

constructs data streams by extracting data from response packets from a given web server

to the client. That data is then written to a file based on the IP addresses and ports that

are specified in this given TCP data stream.

 Tcpflow allows a user to alternatively look at a live capture of traffic or take

previously captured data from other applications such as Wireshark or Tcpdump. The

main requirement of captured data traffic is that it needs to be in the PCAP format; this

allows Tcpflow to read and extract data from PCAP files and convert the packets into the

corresponding TCP data streams. Building the captured traffic into data streams allows

the data to be organized in a manner similar to the intended purpose of IseHarvest.

However, Tcpflow does not take the next step of extracting the data into the specific files

www.manaraa.com

13

contained in the data stream; by this I mean the images, HTML files, CSS files or even

saved documents are combined together into one file instead of saved individually to the

hard drive for easy access. The user can only look at this information in its byte or text

format. The following is an example of Tcpflow output:

Figure 6: Tcpflow Output of ISU Homepage

In the previous data, Tcpflow’s output consists of the HTTP header information

containing generic information such as type (text/html), date, etc... before any data file.

In addition to the header information it contains the re-assembled data, the HTML file, in

a text format. This is difficult to view in a browser because it is combined with the

header information and other data included in this TCP stream. This output is extremely

useful for text files because it lets you view the content, but is almost useless for image or

www.manaraa.com

14

video files.

 As noted, Tcpflow provides a useful functionality, like Wireshark and Iris
®
, where

it assembles data packets back together into TCP data streams. Unfortunately it does not

take the next step of assembling the data into actual data files that will let a web browser

or an operating system easily display the data visually. As such, there is still a need for a

data extraction tool that takes the process to the next step.

 Tcpflow was chosen to use as a base for IseHarvest because it provided a number

of useful features that made development of IseHarvest easier, such as packet capture and

TCP session assembly. In addition to providing useful features to prevent re-inventing

the wheel, Tcpflow is also a light weight, open source application that is adaptable for our

purposes.

2.5 Result

 There are a number of technologies that allowed a user to examine and analyze

captured web traffic. Each of the technologies that I identified allows the user to examine

captured traffic at a low, technically oriented level by directly examining bytes or text

formats. Other technologies, such as Iris
®
, provide a user with a limited visual

representation of data, but not the opportunity to examine that data separately. This may

present a problem for common users and new administrators if they have not been

introduced to these options. As a result, IseHarvest moved forward with its purpose to

develop a software application to make it easier for administrators and users to look at

and visually analyze their captured network traffic.

www.manaraa.com

15

CHAPTER 3. IMPLEMENTATION

 This chapter focuses on the implementation details of various aspects of

IseHarvest. It begins by looking at the implementation of Tcpflow and what it brought to

IseHarvest. The next section is devoted to what the major aspects of IseHarvest were that

needed to be developed and implemented in order to create a functioning application with

the following subsections: packet filtering, data extraction, data reconstruction, re-

linking, and compiling of the tool for the end user. The chapter ends with a brief

explanation of operating the tool to perform network monitoring.

3.1 Tcpflow

 As previously mentioned, Tcpflow is an application designed to provide network

analysis by following specific TCP streams. Tcpflow operates by examining a provided

PCAP file or live capture. Tcpflow was chosen to be the framework for IseHarvest

because it already provides a number of features that will be required for IseHarvest to

function. Tcpflow possesses the ability to: 1) use live or previously captured traffic, 2)

organize captured TCP traffic into sessions that are organized by IP addresses and ports

and 3) assemble corresponding data segments in respective sessions.

 The first ability, retrieving packets from a live or saved capture, is implemented

using the libpcap library [9]. Tcpflow initializes a handler depending on whether Tcpflow

is using a specified input file or using an Ethernet device:

pd = pcap_open_offline(infile, error);

handler = find_handler(dlt, infile);

Or:

www.manaraa.com

16

pd = pcap_open_live(device, SNAPLEN, !no_promisc, 1000, error);

handler = find_handler(dlt, device);

dlt represents the data link type that will be used and infile or device is the input file or

network device used for retrieving packets. Once a handler is created, Tcpflow calls

pcap_loop to initialize packet reading:

pcap_loop(pd, -1, handler, NULL);

 pcap_loop is a function provided by the libpcap library, it uses pointer pd and handler to

access either the capture file or network device to continually read packets from either

location. Once a packet is read, the first step is to look at and strip the IP header from the

packet to allow easier access to the next layer of data. Tcpflow is designed to only handle

TCP traffic, so if the packet contains any other protocols, such as User Datagram Protocol

(UDP) or Address Resolution Protocols (ARP), it currently disregards those packets since

it is not interested in them. The next step for Tcpflow is to process the TCP headers.

Once the TCP header is read from the data packet, a “flow” object is created to

correspond to this packet. This object keeps track of source and destination IP addresses

and corresponding port numbers for each address. The flow structure is provided as

follows:

Typedef struct {

 u_int32_t src;

 u_int32_t dst;

 u_int16_t sport;

 u_int16_t dport;

} flow_t;

Once the flow is created, it is used to create a flow_state_struct that will keep track of

additional information for individual TCP streams, such as what file is used to save the

outputted stream. The flow_state_struct is an object created to identify necessary

information to maintain and keep track of active streams. This object is then placed into

www.manaraa.com

17

a list of all open connections that are currently active. Whenever a new stream is

detected, a flow object is created as well as a corresponding flow_state_struct. Once

created, they are placed into a list to enable Tcpflow to identify any data packets that will

belong to the existing streams. The flow_state_struct keeps track of the flow, associated

output file and various other pieces of information. The flow_state_struct object is

structured as follows:

typedef struct flow_state_struct {

 struct flow_state_struct *next;

 flow_t flow;

 tcp_seq isn;

 FILE *fp;

 long pos;

 int flags;

 int last_access;

} flow_state_struct;

Now that a flow_state_struct has been created, all packets that match the flow

designated by this state (meaning possess the same source IP address, destination IP

address, source port and destination port) will be outputted to the file designated by their

corresponding flow_state_struct. Additionally, since TCP packet sequence numbers are

incremented according to the size of each packet in a specific TCP stream, they are used

to chronologically output all data to the specified output file such that data will be placed

in correct order when written to files along with its HTTP header information. Each

output file is named and identified based on the flow object, meaning by IP addresses and

ports. These output files are designated as follows:

<source_IP>.<source_port>-<destinatiaon_IP>.<destination_port>

192.168.1.1.54321-192.168.1.2.54322

When a TCP stream is active, it is common for multiple files to be transferred

over the stream. Therefore once a stream is closed, there will often be multiple data files

www.manaraa.com

18

stored in the specified output file. From this point, Tcpflow was modified to enable it to

function in a manner that met the goals for IseHarvest (more on this below). IseHarvest

extension replaced the current TCP stream reconstruction and rewrote it to reconstruct

individual files instead multiple files together for a stream, with capacity for future

protocols to be added.

3.2 IseHarvest Extension

 As stated previously, IseHarvest is intended to be a software framework that

provides users with a visual method of analyzing network traffic to determine web

content has been transferred over the network. It is additionally implemented to be easy

expanded to handle further protocols as necessary.

The following subsections discuss the components and modifications that were

incorporated into Tcpflow to expand it to the needed level.

3.2.1 Packet Filtering

 IseHarvest’s initial functionality is to be able to parse and identify web files, such

as webpage HyperText Markup Language (HTML), Cascading Style Sheets (CSS),

images and as many other file formats that maybe be commonly placed on web pages.

This necessitates the need to identify when files are being sent over the wire. At the point

in the application where IseHarvest actually sees packets received by Tcpflow

functionality, we have stripped off the TCP and IP packet headers, leaving only HTTP or

any other protocol that TCP packets may contain. [11] Since IseHarvest is intended to

primarily reconstruct web traffic from over the Internet, it focuses on the HTTP protocol,

www.manaraa.com

19

until other protocols are developed.

In HTTP, packet headers are important when browsing through the internet. A

web browser will commonly send a GET packet to a designated web server when

requesting a web page. These GET requests are commonly structured similarly to these

examples:

GET / HTTP/1.1

Host: www.iastate.edu

User-Agent: Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.8.1.12) Gecko/20061201 Firefox/2.0.0.12

(Ubuntu-feisty)

Accept:

text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

Or:

GET /styles/07/isutopB2.css HTTP/1.1

Host: www.iastate.edu

User-Agent: Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.8.1.12) Gecko/20061201 Firefox/2.0.0.12

(Ubuntu-feisty)

Accept: text/css,*/*;q=0.1

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

Referer: http://www.iastate.edu/

 These packets are identified by a “GET” which is then normally followed directly

with either a “/”, in the case of root web pages, or by the name of the file that is about to

be transferred over the network. The complete filename is constructed for IseHarvest

using both the name identified following the “GET” and the host specified after the field

“Host:”, “www.iastate.edu” in this case. Therefore the complete filename are created as

“/www.iastate.edu/” for the first packet and “/www.iastate.edu/styles/07/isutopB2.css” for

the second packet [12]. Notice, that the first packet is only specified by the directory of

www.manaraa.com

20

“/www.iastate.edu/”. IseHarvest appends ”index.html” to the end of the filename in order

to be able to write the document to a file. This is consistently followed for main

homepages. Therefore the complete filename for the first packet is

“/www.iastate.edu/index.html”.

Once the filenames are identified, IseHarvest creates each directory and file listed

in the complete filename. This allows IseHarvest the added benefit of simulating the

directory structure of a given web server, preventing files with the same name from

overwriting each other, and providing insight into how a web server was designed.

Concurrently, this method of file naming and association allows multiple websites to

exist together without impacting each others files. Thus, the GET request provides a

convenient method to identify files being transferred over the wire, determine what to call

a file in order when writing it to the hard drive, and keep track of multiple files with the

identical names.

 Once the GET request is detected traveling from client to server, it is necessary to

watch for file data sent from the server to client computer:

Figure 7: GET Request and Document [12]

www.manaraa.com

21

 Therefore it is necessary to modify flow_state_struct in order to account for the

reversed direction. The new object, referred to as a session, contains an additional flow

object, so it keeps track of both directions (to and from the client (source) computer and

the server (destination)) to make it easier to identify where traffic belongs:

typedef struct session {

 struct session *next;

 flow_t src_dest;

 flow_t dest_src;

 tcp_seq isn;

 FILE *fp;

 char filename[NAME_SIZE];

 long pos;

 int flags;

 int last_access;

 int data_type;

 int chunked;

 int gzipped;

 int directories;

} session;

 Like Tcpflow, most packets have a session corresponding to it in the local list of

active TCP streams. This list is again used to ultimately determine where received data

packets will need to go based on the flow object that corresponds to each packet, referring

to the source and destination IP addresses and port numbers extracted from each packet.

Additionally, there are a number of differences between this object and the original

flow_state_struct defined by Tcpflow.

First, besides containing two flow objects instead of one, each session contains the

actual filename to write extracted data to in order to make file identification and re-

linking (section 3.2.3) easier. The other major changes are that the session contains three

additional variables; data_type, chunked and gzipped. The variable data_type is used to

identify what type of file is being transferred, whether HTML, JPEG, etc... The value

chunked is used to identify if a file being send over the network has been segmented by

www.manaraa.com

22

the server. This only happens when the server dynamically creates files and does not

know how large a file is when sending. The server will flag the data as chunked and

sends small pieces of the data over at a time. IseHarvest therefore needs to be able to

parse out when data is segmented so that it can re-assemble the data when its transfer is

complete to make the data readable. The final variable, gzipped, is similar to chunked in

that it does not apply to every packet transferred between computers. For larger files

transferred between web servers and client computers, it is prudent to compress a file to a

smaller size to improve the speed that pages are loaded by the client’s web browser.

When this happens, the server flags the data as gzipped, or compressed, so that the client

computer understands to uncompress the file before attempting to read and display the

data to the user. Likewise IseHarvest needs to be aware of compressed data in order to

uncompress and write it to a file to readable by the user and any tools that the user may

use in conjunction with IseHarvest.

At this point, IseHarvest has identified all the necessary information from the

initial HTTP packets. Once a file has been identified with a GET request, IseHarvest

begins looking for the data packets. From here on out, any data packets without a

corresponding active session are discarded and ignored. Since IseHarvest is a passive

application, if there are missing or corrupt packets in the capture, it cannot correctly re-

assemble the files. It assembles with the data it has and leaves the files for analysis. Data

extraction and reconstruction are discussed in the following section.

3.2.2 Data Extraction and Reconstruction

 This section is going to discuss the methods and processes used to implement data

www.manaraa.com

23

extraction from the corresponding network packets. This includes identifying the data

packets, identifying the corresponding output, un-segmenting the data, and

decompressing the data files to enable them to be easily read by a user when

reconstructed.

 After filtering the captured packets for active sessions, the first step in the

reconstruction process is to identify the corresponding output file. If you recall from the

previous section, upon receiving a GET request that the client browser sent out we

extracted necessary information from that packet. This information included the

filename, IP addresses (source and destination) and port numbers that are involved in the

transmission of this data file. Upon receiving a data packet, the first values checked are

the IP addresses and port numbers associated with a given data packet. These values are

compared to the locally kept list of active sessions. If an active session contains a flow

object matching the IP addresses and ports identified with this data packet, the data is

stored to the file linked to by the corresponding active session. To ensure data segments

are written to the correct locations in corresponding files, the sequence number of the

packets is used as a write address. When the initial GET request is detected for a data

file, the sequence number for that session is identified as the “zero” index for this data

packet, and used as the initial place marker for writing data to the output file. Since the

sequence numbers correspond to the number of bytes written by previous data packets

(sequence number 1275 higher than the initial place marker means 1275 bytes were

written before the current packet and 1275 is the current location to start writing), they

can be used to conveniently identify what location in a file to write the current data

fragment. This ensures data is written to the correct location in the corresponding output

www.manaraa.com

24

file, regardless of the order a packet has been received. Since IseHarvest is a passive

application, and if any packets are corrupt or missing in a traffic capture, the resulting

files may be potentially unreadable.

When data files are completely received, there remain small issues of un-

segmenting chunked files and decompressing data if necessary. Due to the formatting of

segmenting data files, “un-chunking” those files is fairly simple. A data file is chunked

most frequently when a server is dynamically creating files for a client. Files are

segmented using simple protocol that is delimited by carriage returns and line feeds

(CRLF, two bytes of the value 0x0d0a). [10] When data is segmented it is broken into

fragments of various sizes. It is segmented by using an initial length, in bytes, which is

followed by CRLF. Following the initial length is the data segment of the specified

length. Once the data segment has reached the specified length, it is followed by another

CRLF and the process repeats with the length of the next segment and data of the new

specified length. This pattern continues until a length value of zero is parsed followed by

two CRLFs to signify the end of the data being sent. To un-segment the data, IseHarvest

proceeds by reading each specified length and the corresponding data segment. As

IseHarvest reads each length, it writes only the corresponding data to temporary file but

not the length value. Once all data has been read and length values removed, the original

data file is deleted and the temporary file changed to the old name.

At this point IseHarvest has removed extraneous information from the data and

can proceed to decompress the data files if necessary. If a designated file was flagged as

being gzipped by the initial packet sent from the server to the client, it is a simple matter

to decompress the data. IseHarvest executes the application gzip, assuming it is an

www.manaraa.com

25

installed application, and the data file will be automatically decompressed to allow the

local computer to easily view and use the received file. The next step for IseHarvest is to

re-link HTML and CSS files so they reference files locally.

3.2.3 Re-linking

 When all data files are received and re-assembled on the local computer, each

image, video, document, etc… can be easily viewed individually. However, it is desire-

able to view entire web pages that were accessed through the network. Therefore, the

next step is to rewrite HTML and CSS documents to link to images and documents

locally instead of attempting to connect to the web server. As stated previously, when a

website is viewed all necessary pieces (images, documents, etc) are sent to the client’s

web browser to allow the client to see the web page correctly, unless cached by the client

browser. When an HTML document is viewed, all components are linked to as if they

were on the web server, as follows:

Example of HTML and CSS original links.
<img src="http://www.iastate.edu/img/isu282.gif" alt="Iowa State University" width="282" height="21"

/>

<script src="/js/gamewatcher07.js" type="text/javascript"></script>

U

This code represents an HTML document linking to an image, a JavaScript document,

and a SHTML page. The Iowa State University homepage was again used as an example,

with all of the original HTML and CSS code, looks as follows in figure 8 when viewed

from a browser over the internet. As shown, the entire web page is easily viewable using

a regular web browser. However, using IseHarvest, the web page should be viewable

locally without an internet connection. The following image is how the Iowa State

University homepage looks with the HTML and CSS code not re-linked, but not able to

www.manaraa.com

26

Figure 8: ISU Homepage with web browser

access the a web server in order to display referenced images and documents, in other

words how only the HTML looks without an internet connection as in figure 9. This page

is viewable and it is possible to determine a lot about the web page from the links and

textual information contained. This can represent a problem however, because the intent

of IseHarvest is to allow a third party to view as much of a websites as possible without

directly communicating with the web server that hosts a specified web page, to see

everything that the target sees in a sense. This requires IseHarvest to modify any HTML

or CSS files on the fly to allow the complete web page to be viewed. If links were not

modified or redirected, then the browser would attempt to download all data

www.manaraa.com

27

Figure 9: ISU Homepage with IseHarvest without re-linking

from that original web page to view the website. An example of what links should look

like after being re-linked, is as follows:

Example of re-linked HTML and CSS links.
<img src="../www.iastate.edu/img/isu282.gif" alt="Iowa State University" width="282" height="21"

/>

<script src="/js/gamewatcher07.js" type="text/javascript"></script>

U

The first step in re-linking files is to parse for entries that include websites or

filenames. The most common examples or “tags” linking to other files in HTML or CSS

www.manaraa.com

28

code are referenced in the above examples and include: img src for image files, script src

for java related files and href for linking to other web pages and documents [12]. Once a

specific tag is located, it is often in the format of a complete path name to specific files.

An example of this is “http://home/web/image.jpg” or “/home/web/image.jpg”. These

links may reference another website if containing an “http://” or are an absolute path

from the local root web directory. To re-link properly on the local machine, this path

needs to be changed from “http://home/web/image.jpg” to simply

“../home/web/image.jpg”. The “..” is necessary because if the link is referencing another

website, it needs to go down to a lower directory in order to enter the correct website

captured by IseHarvest.

Once a specific link is modified appropriately, it is written to the data file and

once all specific links have been re-linked to the local machine, it is now potentially

feasible to view the website directly off the local computer. The following webpage,

figure 10, is again the Iowa State University homepage, except now run through the

entire IseHarvest application.

The shown webpage is identical to the original website when viewed from any

computer over an internet connection. This page was displayed from the images and data

captured from another computer viewing the Iowa State webpage. Once the captured

traffic was entered into IseHarvest, the internet connection was disabled for the viewing

computer and viewed locally without any possibility of a connection to the original web

server. The originally viewed site and the re-constructed site are identical when viewed

through the browsers and, as previously discussed, the only differences between the two

are the location of the data corresponding to the webpage; on a remote web server or

www.manaraa.com

29

locally contained.

Figure 10: ISU Homepage with IseHarvest with re-linking

3.2.4 Framework

 As stated, in addition to performing HTTP reconstruction IseHarvest is intended

to provide a framework for easy integration of additional protocol handling. There are

multiple layers of extensibility available within IseHarvest. These layers include

implementing additional network layer protocols (IP, ARP), transport layer protocols

(TCP, UDP), and other application layer protocols (HTTP, FTP, etc…) that may be

integrated into IseHarvest.

www.manaraa.com

30

 In order to incorporate additional protocols, IseHarvest is layered to handle the

different protocols. Currently, it ignores all packets except for IP packets and handles

them with the following function call:

process_ip(const u_char *data, u_int32_t length);

Parameters to this function include the packet data (data) and the length of the packet

(length). Internally to this function, the IP header is read and stripped away as no longer

needed. If the packet is identified as a TCP packet it is passed into the following

function, otherwise the packet is not supported and discarded:

process_tcp(const u_char *data, u_int32_t length, u_int 32_t src, u_int 32_t dst);

Parameters passed into this function include the data packet (data), the length of the TCP

packet (length), source IP address (src), and the destination IP address (dest). Similarly

to the IP function, the TCP header is read and stripped since it is no longer needed.

Finally, the packet is passed into the following function to be processed for HTTP:

process_http(flow_flow, const u_char *data, u_int32_t length, u_int32_t seq u_int32_t ack_seq);

Parameters include the data packet, length, source and destination addresses, as well as

sequence numbers (seq and ack_seq) to identify placement of the data packets.

 In order to implement an additional protocol, it is necessary to insert new function

(process_protocol) in the correct layer in the application. This will depend on the

protocol: File Transfer Protocol (FTP) would be placed in the transport layer and the

function call referenced in the main header file (Tcpflow.h) for example. Including the

source modules in this manner should allow additional protocols to be easily inserted into

IseHarvest. Compiling the new code will be covered in section 3.2.5.

www.manaraa.com

31

3.2.5 Compiling

 Tcpflow had an extensive and effective system of compiling to ensure that the

application could be compiled on a variety of Linux and Unix operating systems. The

majority of this compiling system, including makefiles and configuration files, was

simplified to make compiling of the application easier to perform. Makefile construction

is as follows:

http.o: http.c

 gcc –DHAVE_CONFIG_H –I. –g –O2 –Wall –Wno-unused –c http.c

(for each source file)

IseHarvest: datalink.o flow.o main.o tcpip.o util.o http.o

 Gcc –g –O2 –Wall –Wno-unused –o IseHarvest datalink.o flow.o main.o tcpip.o util.o http.o

(for main executable)

In order to compile the IseHarvest application, there is only a need to enter one

command from inside the source code directory. The command needed to compile the

IseHarvest system is:

make

This command automatically compiles the source and header files inside the

source code directory. Once compiled, an executable file labeled IseHarvest is created

and may be used to execute the application.

In order to compile in a new source file, it needs to follow the pattern established

by the http.o and similar compile lines. Then simply add in the <new>.o into the

IseHarvest compile command and the application should be compile-able.

Operating instructions are documented in the following section.

3.2.6 Operating

 IseHarvest executes similarly to Tcpflow since it contains many of the same

www.manaraa.com

32

functionalities, with the added functionalities of packet re-assembly. Once the program

has been compiled, there are a number of parameters that may be entered to enable

functionality to be maintained.

 The default functionality is data extraction and re-assembly from a specified

PCAP formatted file as input. IseHarvest’s default functionality is executed as follows:

IseHarvest –r <PCAP file>

When executed in this manner, IseHarvest reads the specified PCAP file and assembles

the data as specified in the implementation section. The data files outputted are placed in

the local directory that IseHarvest was called from. Currently all files are outputted and

placed into the current directory as detected and assembled. Currently, the application is

being expanded to identify what web page is being monitored; all files that are detected

to belong to this web page will be placed in a common directory for ease of identification

and prevent data files with identical names from overwriting previous files.

 It is possible to run IseHarvest on a live capture of data traffic. This mode of

operation may have two affects; 1) running on any internet connection which receives a

useful amount of internet traffic may cause IseHarvest to slow down due to the large

number of read and write accesses performed for each packet and when data files are re-

linked, and 2) if IseHarvest is slowed down while attempting to keep up with a live

internet connection it could potentially lose packets and end up with incomplete data

files. IseHarvest may be operated in the live operation mode with the following

command and root privileges:

IseHarvest –d <device>

 An additional useful functionality originally provided by Tcpflow is to limit the

www.manaraa.com

33

number of files that are opened at a single time. This cuts down on the number of

accesses to the hard drive of the local computer but also slows down the local computer

because only a limited number of files may be open at one time. This functionality is

implemented as follows:

IseHarvest –f <#> -r <PCAP file>

When a number # is entered, this limits the number of total files that may be open at a

single time to #. Otherwise the application attempts to detect the maximum number of

open files the operating system can handle. This may improve memory usage, but

consequently slow down the application due to continually opening and closing files with

large traffic captures.

 IseHarvest offers other functionalities based on the original Tcpflow application

which can be viewed by looking at the Tcpflow man page or running the following

command for a brief help on available commands:

IseHarvest –h

This displays a limited help menu to explain current options available to IseHarvest.

CHAPTER 4. TESTING

 IseHarvest is tested with a variety of testing procedures. Initial tests were

operated by performing Wireshark captures of simple browsing to websites such as the

Iowa State University homepage (www.iastate.edu), the Slashdot website (slashdot.org)

and others.

 To run IseHarvest one a live capture, you simply follow the operating instructions

in section 3.2.6 with a valid network device and IseHarvest will reconstruct traffic as it

www.manaraa.com

34

receives it.

To run IseHarvest on a capture file, you must create a capture to run IseHarvest

upon. To create the traffic capture, the first step was to clear the local web browser’s

cache to ensure that the web browser would load the entire web page. If the cache was

cleared, it ensures that the entire web page would be transferred over the network. If one

or more packets are not transferred, then the web page would be missing pieces on the

monitoring computer. The next step is to use Wireshark to begin a data capture and,

while Wireshark is running, access the desired web page (Iowa State homepage in this

case). Wireshark will capture all the packets being sent to and from the web site and

display them to you as follows in figure 11.

The screen shot in figure 11 shows Wireshark displaying an initial GET packet for

the Iowa State homepage. The traffic that has been captured is now saved to the local

computer, using Wireshark, in a PCAP data format. Once the file is written, IseHarvest is

then called with the PCAP file as a parameter. Once operation on the PCAP file is

complete, data is outputted to the local computer as displayed in figure 12.

The displayed files in figure 12 can then be accessed and used to open the web

page locally. The Iowa State University web page as displayed previously in this

document is the output of executing the www.iastate.edu/index.html file locally. This

operation was successfully used to extract various web pages. Additionally, IseHarvest

successfully captured the Iowa State University homepage as well as other web pages in a

live capture operation. Testing on web pages such as Slashdot.org has successfully

extracted and viewed the information with approximately an 80% success rate.

www.manaraa.com

35

Figure 11: Wireshark Capturing ISU Homepage for testing

Figure 12: ISU Homepage Example Directory Output with IseHarvest

www.manaraa.com

36

In figure 13, the circled location in red shows an image that failed to be viewed.

Figure 13: Slashdot with IseHarvest [14]

 For continued testing and fine-tuning, captured traffic files from the National

Cyber Defense Competition (CDC) held by Iowa State University this school year are

being used to continue improving IseHarvest. These tests provided large data files that

rigorously test IseHarvest on a much larger scale than simply looking at individual web

pages. IseHarvest successfully extracts the majority of the data from the capture files, but

due to attacks and other files, IseHarvest can run into issues with re-linking HTML and

CSS files from ISEAGE.

www.manaraa.com

37

 IseHarvest has been put under a number of tests that show its effectiveness at

extracting HTTP traffic from captured data files. It has successfully extracted the

majority of data from captured files with the exception of some dynamic content used in

today’s internet. It currently extracts and assembles data more accurately then when

viewed with the commercial tool by Iris
®
.

www.manaraa.com

38

CHAPTER 5. CONCLUSION

IseHarvest utilizes many abilities that were built into Tcpflow, providing a

stepping stone from the original functionality to implement data extraction in HTTP. It

has been developed in a way that will allow future developers to implement new

functionalities with relative ease. This thesis discussed the implementation of its current

functionality and how it works to extract and re-assemble HTTP traffic. Following that

model, future protocols can be implemented into this framework to allow adaptation and

expansion.

I feel IseHarvest successfully meets its goal of providing a network traffic

analyzer for web traffic content in HTTP traffic. I feel it successfully meets its goals to

read captured TCP traffic, extract HTTP data, reconstruct complete data into viable

documents, videos and web pages, re-link HTML and CSS pages to allow local viewing,

and provide a framework for future modifications and extensions to be added to

IseHarvest.

5.1 Limitations

 As mentioned throughout this document, IseHarvest has a few limitations.

IseHarvest successfully extracts data from complete streams and can successfully re-link

the majority of HTML or CSS files that it intercepts. However, it is currently unable to

account for all possibilities. The following are a number of the known limitations

IseHarvest may run into.

The first limitation deals with IseHarvest’s ability capture traffic. To enable users

www.manaraa.com

39

to more efficiently browse the Internet, web browsers cache web pages locally to allow

faster loading. When a portion of a web page is cached locally, it will not be sent from

the web server to the client computer. If a file or image is not sent between the web

server and client, then IseHarvest is unable to intercept that data. Therefore, IseHarvest is

unable to completely load web pages which contained cached content since it is intended

to passively capture and only analyze what it sees.

 A second limitation is one that affects all network analysis tools, dropped or

corrupted packets. When a captured packet is corrupt or non-existent, it means

IseHarvest is unable to complete the file that packet belongs to. A single corrupt segment

of data causes an entire file to be corrupt. In normal circumstances, a web browser would

potentially request that packet be sent again, but if not then IseHarvest is unable to

guarantee a readable data file when it does not see all necessary packets.

An additional limitation of IseHarvest is in re-linking dynamically generated

content. As web servers become more intelligent, they keep track information about

client web browsers from cookies, databases, etc… An example of this issue is when a

web server dynamically generates a web page for a client. It is possible to generate a web

page such that two separate links will direct a user to an identical web address or Uniform

Resource Locator (URL). The web server is able to understand and differentiate these

two URLs, sending the correct information to the client when necessary. IseHarvest,

however, is unable to detect these issues. IseHarvest creates one file and then overwrites

it with data from the second link. This will cause both links to refer to the same place

since IseHarvest is unable to refer back to the web server. This is an issue that, even in

the future, IseHarvest will most likely be unable to effectively solve.

www.manaraa.com

40

5.2 Future Work

As discussed earlier, it is necessary to re-link HTML and CSS files in order to

ensure that the local computer can view the web pages correctly. While re-linking works

very well on content that is somewhat static for a web site, it is not 100% effective for

highly dynamic content on websites. Websites which generate content specifically for

each client can have very dynamic pages that are more difficult to keep track of. While

IseHarvest can still successfully partially reconstruct those web pages, dynamic links can

include symbols or characters that disrupt IseHarvest’s ability to successfully re-link and

load extracted files. Improving the functionality of IseHarvest to more effectively adapt

to dynamic web pages will allow IseHarvest to improve its accuracy when reconstructing

captured web pages.

As stated, IseHarvest is intended to be a framework for future protocols to be

added to, and a major future goal would be to implement additional protocols and

improve on HTTP if/as it changes. There are number of additional protocols and

applications which, if implemented in IseHarvest, would be extremely useful. These

protocols include, but are not limited to, email (SMTP or POP protocols), chat clients

(Jabber or AIM), streaming videos, File Transfer Protocol (FTP), etc...

 An additional potential future modification to IseHarvest would be to insert

filtering options for capture files. It could be desirable to search through a large amount

of traffic for specific streams of data or data files that may include a key word, specific IP

address, or any other search variable. This may be inserted at numerous locations in the

www.manaraa.com

41

application depending on the developer’s prerogative.

 IseHarvest leaves options for many different ideas to be added and implemented

in it. While the stated features would enhance IseHarvest, they should be implemented as

the need arises to provide additional functionality.

www.manaraa.com

42

REFERENCES

[1] V. Jacobson, C. Leres, and S. McCanne. (2008, Jan.). The Tcpdump Manual Page.

Lawrence Berkely Laboratory, Berkeley, CA, Jun 1989.

[2] Gianluca Varenni, Ulf Lamping, F. Risso, L. Degioanni. (2007, Dec.). PCAP

Next Generation Dump File Format. Internet Engineering Task Force. [Online].

Available: http://www.winpcap.org/ntar/draft/PCAP-DumpFileFormat.html

[3] Elson, Jeremy. (2008, Jan.). The Tcpflow Manual Page. Circlemud.org [Online].

Available: http://www.circlemud.org/~jelson/software/tcpflow/tcpflow.1.html

[4] Iowa State University. (2008, Mar.). Iowa State University Homepage. Iowa State

University of Science and Technology. [Online]. Available: http://www.iastate.edu

[5] Gerald Combs. (2008, Jan.). Wireshark Network Analyzer Man-pages.

Wireshark.org. [Online]. Available: http://www.wireshark.org/docs/man-

pages/wireshark.html

[6] Filetransit. (2008, Feb.). Capsa 3.0. Colasoft. [Online]. Available:

http://www.filetransit.com/view.php?id=15885

[7] Javvin. (2008, Mar.). Network Packet Analyzer Capsa 6.7. Javvin Network

Management & Security. [Online]. Available: http://www.javvin.com/packet.html

[8] eEye Digital Security. (2008, Mar.). Network Security Traffic Analyzer. eEye Inc.

[Online]. Available: http://www.eeye.com/html/products/iris/

[9] Sourceforge.net. (2007, Dec.). Manpage of Pcap. TcpDump/Libpcap public

repository. [Online]. Available: http://www.tcpdump.org

[10] Dan Connolly. (2008, Jan.). Hypertext Transfer Protocol – HTTP /1.1. World

Wide Web Consortium. [Online]. Available:

http://www.w3.org/Protocols/rfc2616/rfc2616.html

[11] Alberto Leon-Garcia, Indra Widjaja, “Applications and Layered Architectures,”

Communication Networks: Fundamental Concepts and Key Architectures, 2
nd
 ed.

New York: McGraw Hill, 2004, ch. 2.

[12] B. A. Forouzan, “World Wide Web: HTTP,” TCP/IP Protocol Suite, 3
rd
 ed. New

Yourk: McGraw Hill, 2006, ch. 22.

[13] YouTube. (2008, Mar.). YouTube: Broadcast Yourself. YouTube, LLC. [Online].

Available: http://www.YouTube.com

[14] Slashdot. (2008, Mar.). Slashdot Homepage. Sourceforge, Inc. [Online].

Available: http://slashdot.org

www.manaraa.com

43

ACKNOWLEDGEMENTS

I would like to thank my committee members for agreeing to be my on my committee

and helping me in my graduate career. Special thanks to Drs. Jacobson and Licklider

who provided feed back, understanding, and assistance when I needed it.

To my family and friends: thank you so very much for your love and support. Without

you, my journey would have been long and painful. I hope to continue making you

proud.

	2008
	IseHarvest: TCP packet data re-assembler framework for network traffic content
	Stephen Michael Eilers
	Recommended Citation

	Microsoft Word - Submission_Thesis.doc

